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Ecofender 2300. Structural parts 
1. Anchoring to dock side 

 

 
Figure 1 

 
Figure 2 
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Berthing of a vessel may demand reaction forces which may reach several hundreds 

of kN per dock fender (1kN=1000 Newton), however these forces are normally not 

transmitted to the parts fastening the Ecofender fenders to the wharf front face. If the vessel 

approaches the dock perpendicularly to the dock side, pressing through the fender the dock 

with a force orthogonal to its front face, the process does not increases the tension of the 

fixing chains. However, the vessel may press the fender making a displacement with a non-

vanishing component in the direction parallel to the surface of the wharf front face, besides 

to the normal component. The parallel components may be vertical by effect of the sea 

waves or horizontal by, for example, the elasticity of the berthing ropes. In this situation the 

forces may, in principle, be transmitted to the fixing elements, which are not rigid but are 

constituted by chains that support the weight of the fender. Nevertheless this can hardly 

occur because before the rubber fender will slide over the concrete of the wharf front face, 

sliding of the steel surface of the vessel side on the opposite surface of the fender should 

take place.  

The friction coefficient between rubber and the steel surface may vary between 0.6 

and 0.85, and the most probable value is 0.7. The friction coefficient of tire rubber over 

concrete has been extensively studied by its importance in vehicles, and all studies give 

values over 0.9. The most frequent values are between 0.9 and 1.1, but can reach 1.39 (D. 

Ammon, R. Gnadler, G. Mäckle, H. J. Unrau, ATZ Worlwide, vol. 106, No. 7−8, pp 34−38, 

2004). (Friction coefficient between solid surfaces cannot be greater than unity, but it can 

when elastomers are involved). 

In conclusion, the forces over the fixing elements of the Ecofender fenders come 

principally from the fender weight. The forces exerted by the vessel are not transmitted to 

the elements fixing the fender to the wharf front face. Ecofender fenders have a fairly rigid 

structure and take advantage of friction forces with the dock face. 

 

Mechanical stability of mounting 
When not working, the fender hangs from the chains and rests on the wharf vertical face. 

The first point is to verify is the stability of the structure under the action of the forces in 

the idle situation. The problem of Figure 1 is hiperestatic because the central anchoring, 

represented by the upper chain, and the lateral anchoring, represented by the lower chains 

are both able to produce equilibrium by themselves. The load on the two systems can be 

chosen by adjusting the tension of the chains. Thus, to safely dimension the anchoring parts 

it is convenient to assuume each of the two systems performing the whole task. Figure 2 

shows the forces operating on the sysytem in the idle condition. If  𝑑 = 0 the scheme of 

Figure 2 depicts the central anchoring, assuming a positive value for distance 𝑑 then Figure 

2 represents the lateral anchoring. 

 In rigor, the force exerted by the wharf side vertical face on the fender is more or 

less homogeneouly distributed, however one can replace the distributed forces by the two 

localized forces 𝐹𝐴 and 𝐹𝐵. Force 𝑇 may represent the tension of the central chain (setting 

𝑑 = 0) or the resultant of the tensions of the two lateral chains (setting 𝑑 > 0). The 

equilibrium equations lead to 
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𝑇 =
𝑃

cos 𝜃
 

𝐹𝐴 = [−
𝐿

4𝑅
+ (1 −

𝑑

2𝑅
) tan 𝜃] 𝑃 

𝐹𝐵 = (
𝐿

4𝑅
+

𝑑

2𝑅
tan 𝜃) 𝑃 , 

where 𝑑 = 0 describes the central anchoring working alone, and 𝑑 > 0 corresponds to the 

lateral anchoring with no help of the central one. 

 Forces 𝐹𝐴 and 𝐹𝐵 must be both non negative, that is, must have the sense indicated 

in Figure 2, because the wharf front face can only press the fender over all its surface, and 

cannot pull from it. Force 𝐹𝐵 is always non negative and the condition for 𝐹𝐴 > 0 is 

tan 𝜃 >
𝐿

2(2𝑅 − 𝑑)
. 

Then, setting 𝐿 = 0.75 m and 𝑅 = 1.25 m, the situation is stable for 𝜃 > 8.5° with 𝑑 = 0, 

and 𝜃 > 16.7° for the extreme value 𝑑 = 𝑅. In conclusion, the stability of the fender 

mounting is ensured for a small value of angle 𝜃.   

 

Weigth of fender and tension of the mounting chains 
The mass of each tire is stimated as 𝑀1 = 1200 kg. Each disk of 20 mm thick steel has an 

external diameter of 2.200 m and an internal one of 1.600 m, and hence its mass without the 

triangular elements in the external perimeter is 𝑀2 = 281 kg (density 𝜌 = 7850 kg/m3).  

The mass of each triangular element of 0.020 m thick steel (sides 0.040, 0.040 and 0.050 

m) is estimated as 𝑀3 = 12,3 kg. The mass of the whole fender is then 

3𝑀1 + 2𝑀2 + 11𝑀3 = 4297 kg . 

In practice the fenders accumulate water. Drilling drain holes in the tread is unsafe and 

reduces significantly the capacity for energy storage. A tire of external radius 𝑅2, internal 

radius 𝑅1 and width 𝐿 accumulates a maximal water mass 

𝑀4 = 𝜌𝐿𝑅2
2 [cos−1 (

𝑅1

𝑅2
) −

𝑅1

𝑅2

√1 − (
𝑅1

𝑅2
)

2

] , 

where 𝜌 = 1.025 ton/m3 is the density of sea water. Setting 𝑅2 = 1.15 m, 𝑅1 = 0.62 m 

and 𝐿 = 0.75 m, it turns out to be 𝑀4 = 556 kg . The weight of a complete fender, with 

mass  3 × 𝑀4 of cumulated water can be taken as 

𝑃 = 5965 kg-f = 58.46 kN . 

 (a)   Central anchoring 

The angle of the chain with respect to vertical is 𝜃 = 45° and the corresponding tension is 
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𝑇 =
𝑃

cos 𝜃
= 8436 kg-f = 82.67 kN. 

(b)  Lateral anchoring at 90° 

The resultant of the tensions of the two chains in a plane at 45° from the vertical direction 

is 8436 kg-f. Denoting 𝑇′ the tension of each chain, the resultant is 𝑇 = 2𝑇′ cos 45° and 

𝑇′ = 5965 kg-f .  
 

 
Figure 3 

 

(c)  Lateral anchoring at 60° 

The resultant of the tensile forces 𝑇′ of the two chains satisfies 𝑇 = 2𝑇′ cos 30° and then 

𝑇′ = 4870 kg-f .  

 

Dimensioning chains and anchoring bolts 
The most demanding situation occurs when the central anchoring makes the whole work. 

The chain tension is in this case 𝑇 = 8436 kg-f = 82.67 kN. Assuming a safety factor 1.2 

the chain mus be selected to resist a load of 10123 kg-f = 99.21 kN. 

 

 
Figure 4 

 

Alternatively, considering that the yield stress 𝜎𝑌 for the chain steel is that of the A36 steel 

(𝜎𝑌 = 250 MPa), it must be 

𝜎 =
𝑇

2𝜋𝛿2/4
< 𝜎𝑌 , 

where 𝛿 is the diameter of the ring bars. From this relation we have  
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𝛿 > √
2 × 99210

𝜋 × 250 × 106
= 0.0159 m   (diameter of ring bars) . 

Then the diameter of the ring bars must greater than 1.6 cm = 0.63”. The recommended 

chain is the one characterized by number 3338 in the list included below, of high resistance 

chains grade 80 in norm ISO 3076. 

 

 
 

 

 
Figure 5 

 

Chains are fixed to the wharf front face by a steel ring welded to a plate fastened to 

the concrete by four anchoring bolts. The anchoring bolts of the central chain, which is the 

one supporting the largest stress when doing the main work, must support forces making an 

angle of 45° with respect to the bolts axes, as seen in Figure 5. The bolt is subjected to 

combined normal and shear stresses, 𝜎 and 𝜏. The normal stress comes from the sum of the 

force due to the torque applied to bolts when mounting the system and the normal 

component 𝑇 cos 45°/4 of the tension of the chain applied to each of the four bolts. The 

shear stress is determined only by the other component 𝑇 sen 45°/4 of the force exerted by 

the chain. 

 To determine the normal load due to the mounting torque it is assumed that the steel 

plate must exert a moderate pressure over the concrete surface when the chain is working 

with a tension 𝑇 = 10123 kg-f = 99.21 kN.  This is ensured by producing a load slightly 
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greater than 𝑇 cos 45°/4 by effect of the mounting torque given to the bolts. This way, the 

force of the chain over the plate almost equilibrates the force exerted by the bolt heads over 

the plate. The difference between both forces presses the concrete without producing a 

considerable maximal friction force, and thus the shear forces on the bolts are the ones 

preventing the plate sliding over the concrete surface. The normal load exerted on a bolt is 

then 2𝑇 sen 45° and the stresses are 

𝜎 =
1

4

2𝑇 cos 45°

𝜋𝛿′2/4
,        𝜏 =

1

4

𝑇 sin 45°

𝜋𝛿′2/4
 . 

The bolt initiates deformation when semi-difference between the principal stresses becomes 

greater than the flow stress (Apendix A). Thus the condition for the mechanical stability of 

the system is 

√(
𝜎

2
)

2

+ 𝜏2 <
𝜎𝑌

2
 . 

Combining these equations and replacing sin 45° = cos 45° = 1/√2 it turns out that the 

diameter 𝛿′ of the bolts must be such that 

𝛿′ > √
2𝑇

𝜋𝜎𝑌
 . 

Replacing the tension 99.21 kN, which incorporates a safety factor, and assuming 𝜎𝑌 =
36 ksi = 250 MPa, which corresponds to a grade 2 bolt, a modest bolt quality, it is 

obtained that 

𝛿′ > 0.0159 m = 1.6 cm = 0.63"  (minimal diameter for mounting bolts).  

Alternatively, bolt choice can be done demanding that can support a load greater than 

𝐹 =
𝜋𝛿′2

4
𝜎𝑌 = 49.64 kN = 5065 kg-f. 

In practice anchoring bolts of 3/4 x 8” are used, which is a considerably oversized 

dimension according to the previous calculations. 

 

Eye plate and pad plate, and shackle 
Figure 6 shows the eye plate anchoring the fender to the wharf vertical front face, as well as 

the shakle and part of the chain. Each fender is supported by three of these systems, one 

placed directly above and two at both sides. The latter two are located in such a way that 

the corresponding chains make angles of 30° (or 45°) with the vertical in the elevation or 

frontal view, and an angle of 45° in the lateral view.  

Figure 7 indicates the forces operating on the anchoring parts when the chain is 

subjected to a tension 𝑇. It is assumed that the chain may have an angular deviation 𝜃 with 

respect to the vertical direction in the frontal view. The calculations below asume the 

hypothesis that the pad plate undergoes a plane elastic deformation, thus the normal stresses  

𝜎, which are proportional to the unitary deformations at each point, follow a linear law of 

the general form 
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Figure 6 

 
Figure 7 
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𝜎(𝑥, 𝑦) =
𝑇

√2𝐿𝑒
+ 𝛼𝑥 + 𝛽𝑦, −

𝐿

2
≤ 𝑥 ≤

𝐿

2
 , −

𝑒

2
≤ 𝑦 ≤

𝑒

2
 , 

where the notation is defined in Figure 7, 𝛼 and 𝛽 are constants which must be determined 

by the equilibrium conditions. Equalizing to zero the 𝑥 and 𝑦 components of the 

momentum of the forces one obtains the equations 

∫ ∫ 𝑥 𝜎(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
𝑇

√2
𝐷 cos 𝜃

𝐿/2

−𝐿/2

𝑒/2

−𝑒/2

 

∫ ∫ 𝑦 𝜎(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =
𝑇

√2
𝐷 sin 𝜃

𝐿/2

−𝐿/2

𝑒/2

−𝑒/2

 . 

Solving the integrals after replacing the explicit expression for 𝜎(𝑥, 𝑦), two equations 
for the coefficients 𝛼 and 𝛽 are obtained, which give the solutions 

𝛼 =
12 𝑇𝐷

√2𝐿3𝑒
 cos 𝜃, 𝛽 =

12𝑇𝐷

√2𝐿𝑒3
 sin 𝜃 . 

Inserting this in the original expression for 𝜎(𝑥, 𝑦) one arrives to 

𝜎(𝑥, 𝑦) =
𝑇

√2𝐿𝑒
+

12𝑇𝐷

√2𝐿𝑒
 (

𝑥

𝐿2
 cos 𝜃 +

𝑦

𝑒2
 sin 𝜃) ,

𝐿

2
≤ 𝑥 ≤

𝐿

2
 ,

𝑒

2
≤ 𝑦 ≤

𝑒

2
 .  

This equation indicates that the maximal stresses occur in the points  

(𝑥, 𝑦) = (±
𝐿

2
 , ±

𝑒

2
) , 

therefore 

𝜎Maximal =
𝑇

√2𝐿𝑒
+

6𝑇𝐷

√2𝐿𝑒
 (

1

𝐿
 cos 𝜃 +

1

𝑒
 sin 𝜃) , 

or 

𝑇 =
√2𝐿𝑒𝜎

1 +
6𝐷
𝐿  cos 𝜃 +

6𝐷
𝑒  sin 𝜃

 . 

Here 𝜎 = 𝜎Maximal is the tensile or compressive normal stress in any of the critical points 

(±𝐿/2  , ± 𝑒/2) in the pad plate fixed to the concrete wharf face. 

However the base of the eye plate, welded to the pad, also experiences a shear stress  

𝜏 =
𝑇

√2𝐿𝑒
 

And the condition that fluency does not occurs is 

𝜎𝑌

2
> √(

𝜎

2
)

2

+ 𝜏2 . 

Combining these equations, the condition for the mechanical stability becomes  
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𝑇 <
√2𝐿𝑒𝜎Y

2√1 +
1
4 (1 +

6𝐷
𝐿 cos 𝜃 +

6𝐷
𝑒 sin 𝜃)

2
 . 

Table 1 follows from setting 𝐿 = 0.15 m, 𝑒 = 0.05 m, 𝐷 = 0.075 m, and from 

assuming that the material is steel A36. Steel A36 is know this way because 𝜎Y =
36 ksi =250 MPa and a list of its characteristics is in the figure at the end of this section.  

Table 1 

Limiting chain tensions to prevent failure in the eye plate and pad. 

 

𝜃° 𝑇 [kN] (deformación)  

0 593 

10 452 

20 369 

30 318 

45 273.5 

 

 

Stresses in the shackle 
Chain tension 𝑇 is related with the normal stresses in the two arms of the shackle and chain 

rings, represented in Figure 8 with magnitudes expressed in millimeters, by 

𝑇 = 2𝜋 × 0.0202 × 𝜎   (shackle and chain) , 

where 𝑇 turns out in kN when 𝜎 is expressed in kPa. For the load 𝑇 and shear stress 𝜏 in the 

bolt of the shackle it holds 

𝑇 = 𝜋 × 0.0202 × 𝜏    (perno del grillete) . 

 
Figure 8 

Replacing the critical values of steel A36 the maximal loads these parts can resist. Values 

are given in Table 2. 
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Table 2 

Limiting tension of chain to avoid shackle and bolt failure. 

Part 𝑇 [kN]  (deformation) 

Shackle 628 

Shackle bolt 314 

 

Deformation of pad plate by a transversal load over the anchoring 
ensemble 
To ensure the pad plate will undergo no deformation by the torsion exerted by the eye plate 

when transversally loaded (𝜃 ≠ 0), the local curvature radius 𝜌 of the pad in the union with 

the transversally loaded eye plate is calculated next. 

The eye plate exerts on the pad plate a moment 𝑀 = 𝑇𝐷 sin𝜃 around of the 𝑥 axis, that is 

the axis running along the greatest dimension 𝐿 of the pad, in the common section of both 

plates, the eye and pad ones. According to the  Euler−Bernoulli equation, 

1

𝜌
=

𝑓′′

(1 + 𝑓′)3/2
=

𝑀(𝑦)

𝐸𝐼
 , 

where 𝜌 is the local curvature radius of a plate or beam extending along the 𝑦 axis, 𝑓(𝑦) is 

the deflection at each point 𝑦, 𝑀(𝑦) is the flexing moment at point 𝑦, 𝐸 is the Young 

modulus of the material and 𝐼 the moment of inertia around an axis passing by the center of 

mass of the transversal section. Particularizing to our case one obtains that 

1

𝜌
=

12𝑇𝐷 sin𝜃

𝐸𝐿𝑑3
 , 

where 𝑑 = 1.25" = 0.0318 m represents the ploate thickness. Replacing the value 

𝐸 = 200 GPa of steel A36, and assuming that 𝑇 sin𝜃 = 200 kN, which is a magnitude 

greater than what may be expected in a real situation,  the equation gives 

𝜌 = 20.8 m . 

The curvature radius is then very big, which means that the plate of thickness 1.25" 

conserves practically flat in the most critical region, which is the union with the eye plate. 

The elastic deformation there is negligible. 

 

Shielding against corrosion  of the metallic parts 
Galvanization in hot of type G20. Coating with a zinc shielding of 3.5 𝜇m thick to all 

metallic parts. This protection agains rusting is recommended for agresive media, like the 

marine one. 
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Steel A36 

 
 

2. Calculation of the internal constituents and unions 

 

 
Figure 9 
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 Normal forces, perpendicular to the wharf berthing side, do not produce significant 

stresses on the elements which hold the tires together. The transversal force 𝑃𝑇 is the one 

making the metallic parts to work. Force 𝑃𝑇 distributes evenly in the 12 kidney shaped and 

the corresponding 12 bolts. The calculation assumes the extreme situation in which the 

fender is in its maximum compression, exerting the maximal reaction force 𝑃, and the 

vessel displaces parallel to the wharf vertical face making the hull side to slide over the 

rubber surface of the fender. Thus we have 

𝑃𝑇 = 𝜇𝑃, 

 
 

where 𝑃 is the specified maximal reaction force, which depends on the hull resistance. We 

consider here a design vessel of maximal size established by the Panamax norm. 

According to the inform of 2002 of PIANC, one of its tables is reproduced at the end of this 

paragraph, the recommended maximal pressure on the hull of these vessels is 300 kN/m2. 

The area of an Ecofender 2300 fender is 4.9 m2, hence the maximal force per fender is  

𝑃 = 300  kN/m2 × 4.9 m2 = 1470 kN. 

Considerando ahora 𝜇 = 0.7, 

𝑃𝑇 = 1029 kN  (= 105.0 ton–f). 

 

 
Bolts in between the tires 
The coupling of the tires is not entirely rigid because because the three steel plates, the 

central disc and the two kidney shaped plates have in between the rubber side walls of the 

tires, which are the ones exerting the forces, as shown in Figure 10. 
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The rubber parts do not exert forces on the bolts, but over the central disk and the 

two kidned shape plates. The friction between the steel constituents and the rubber surfaces 

is what support the forces and distributes them over the steel surfaces in order to reduce the 

stress on the rubber parts. The force exerted by the bolts on the rubber surfaces by just their 

tightening at mounting must be comparable to 𝑃𝑇, in order to produce a friction force which 

should not be surpassed in the situation of extreme demand. Each bolt then supports a 

permanent normal stress 𝜎 and a shear stress 𝜏1 when the fender is subjected to a shear 

force.  

 

 
Figure 10 

 

The tightening of the bolts at mounting is such that in the critical situation both stresses be 

of similar magnitude. Then we have a situation of combined normal and shear stresses 

satisfying 

𝜎 = 𝜏1 =
𝑃𝑇/12

𝜋𝑑1
2/4

 . 

Plastic yield is prevented if 

√(
𝜎

2
)

2

+ 𝜏1
2 <

𝜎𝑌

2
 . 

Combining the equations it turns out 

𝑑1 > √√
5

2

𝑃𝑇

3𝜋𝜎𝑌
 . 

Steel volts available in the market are classified in different grades attending to the 

yield stresses 𝜎𝑌 of the material they are made. In millimetric bolts the grade is identified 

by a number at the head, indicating the approximate ultimate stress of the steel. In the norm 

in inches the grade is indicated by radial marks in the bolt head. Appendix B shows a table 

of the bolt grades with their mechanical characteristics. It is shown there that weaker steel 

employed in bolts (bolts of grade 2) have an effective yield stress close to 𝜎𝑌 = 33 ksi =
228 MPa, that is a resistance close to that of the steel A36. Bolts of higher quality (grade 
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8.2 or class 12.9) reach to yield stresses of more than 3 or 4 times the ones of bolts of lower 

class or grade.   

In order to assume the less favourable situation the equations written above are 

evaluated replacing the modest value 𝜎𝑌 = 250 MPa (reference steel A36). It is obtained 

that the bolt diameter 𝑑1 musbe such that 

𝑑1 > 0.0263 m      (minimal diameter coupling bolts grade 2 SAE). 

The 1” bolts (𝑑1 = 0.0254 m) considered in the design of the Ecofender 2300 fender 

would be then slightly sub-dimensioned if lower quality bolts were employed. However, 

more reasonable standard bolts of grade 5 SAE have a minimal yield stress of 510 – 586 

MPa (74 – 85 ksi), which gives for the bolt diameter 

𝑑1 > 0.0172 −  0.0184 m   (coupling bolts grade 5 SAE). 

1” bolts of this grade provide a safety factor of at least 1.38. Bolt tightening torques are 

given in the table below 

 

 

Nominal diameter Minimal pretension kips 

 Inches  ASTM A325  ASTM A490 

  1/2  11  56 

  5/8  19  24 

  3/4   28  35 

  7/8  39  49 

 1    51  64 

 1 1/8  56  80 

 1 1/4  71  102 

 1 3/8  85  121 

 1 1/2  103  148 

 
 
 
Elastic deformation of the kidney shaped plates  
The kidney shaped plates are asimilable to rectangular plates (Figure 11). The rubber 

surface applies a uniform distribution of forces on them, particularly for a small overall 

bending of the plate. The purpose of the next calculation is to dimension this small overall 

bending. 

 Euler–Bernoulli equation:  

𝑦′′

(1 + 𝑦′2)3/2
=

𝑀(𝑥)

𝐸𝐼
 , 
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Figure 11 

 

where 𝑀(𝑥) is the flexing moment at point 𝑥, and 𝑦(𝑥) is the corresponding deflection, 𝐸 

is the Young modulus of steel and 𝛿 the plate thickness. As 𝑦′ ≪ 1 we can write  

𝑦′′ =
𝑀(𝑥)

𝐸𝐼
 , 

and replacing 𝑀(𝑥) 

𝐸𝐼𝑦′′ = −𝐹1𝑥 + ∫ (𝑥 − 𝑥′)
2𝐹1

𝑙𝑙′
𝑙′𝑑𝑥′ = −𝐹1𝑥 +

𝐹1

𝑙

𝑥

0

𝑥2. 

Integrating two times with the conditions 

𝑦′ (
𝑙

2
) = 0,   𝑦(0) = 0, 

it is obtained that 

𝑦(𝑥) =
𝐹1

6𝐸𝐼
(−𝑥3 +

𝑥4

2𝑙
+

𝑙2

2
𝑥) ,     with     𝐼 =

𝛿3𝑙′

12
 , 

Hence the maximum deflection takes place at the central point and turns out to be 

𝑦 (
𝑙

2
) =

5𝐹1𝑙3

16𝐸𝛿3𝑙′
 . 

Substituting 𝑙 = 190 mm, 𝑙′ = 150 mm, 𝛿 = 20 mm, 𝐹1 =
1029 kN

12
= 85.8 kN, 𝐸 = 2.0 ×

1011 Pa (steel A36), we obtain   

𝑦 (
𝑙

2
) = 0.766 mm    (maximum deflection). 

Then the thickness 20 mm for the kydney shape plates is right. There is no significant 

deformation even for a considerable bolt tightening. 
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Internal chains 
 

 
Figure 12.   

𝑎 = 778 mm, 𝑏 = 750 mm 

𝑇 is the tension of each chain, 𝑇′ is the magnitude of the vector sum of the tensions. The 

angle between the two chains is 2𝜙 in the plane they define. The geometry is shown in 

figures 12 and 13, the chains follow the diagonals of the parallelepiped.  

From the geometry of the forces (Figure 13) we have 

𝑇′ =
𝑃𝑇

cos 𝜃
        cos 𝜃 =

𝑎

√𝑎2 + 𝑏2
 

1

2
𝑇′ = 𝑇 cos 𝜙 

𝑇 =
𝑃𝑇

2 cos 𝜙 cos 𝜃
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Figure 13 

 

cos 𝜙 = √1 −
𝑎2

2𝑎2 + 𝑏2
= √

𝑎2 + 𝑏2

2𝑎2 + 𝑏2
 

cos 𝜃 cos 𝜙 =
𝑎

√𝑎2 + 𝑏2
√

𝑎2 + 𝑏2

2𝑎2 + 𝑏2
=

𝑎

√2𝑎2 + 𝑏2
 

and the tension at each chain is 

𝑇 =
√2𝑎2 + 𝑏2

2𝑎
𝑃𝑇 . 

Replacing values the tension turns out to be 

𝑇 = 881 kN = 89.9 ton–f . 

The ultimate stress of the chain considered in the design is 𝑇máx = 46.5 ton–f =456 kN, 

according to the specifications of the manufacturer.  
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According to the previous calculation, the internal chains may should fail for a 

value 𝑃𝑇 = 1029 kN of the transversal force applied to the fender. This force assumes the 

maximal demand that can be applied to the fender. Next the value of 𝑃𝑇 at which the 

rupture takes place is calculated: 

𝑃𝑇(máx.) =
2𝑎

√2𝑎2 + 𝑏2
𝑇máx . 

Substituting the specified magnitude 𝑇máx = 456 kN we have 

𝑃𝑇(máx.) = 533 kN. 

The internal chains constitute a warning for excessive transversal load. The force 𝑃𝑇 =
1029 kN, which is an extreme condition, assumes that the vessel presses a single fender 

(the critical fender) to its maximum, while displaces parallel to the wharf side sliding over 

the fender, with a friction coefficient of 0.7.  

Shackle of internal chains 
According to the design of the Ecofender 2300 fender, the shackles of the internal chains 

have a larger ultimate stress than the chains. 

Disks 

The disks work frontally to compression. The critical points are at the eyes, which must 

support the weigth of the fender (5.9 tonnes with cumulated water), which constitutes a 

comparatively modest load. 

 

 

 

 

 

Dr. Miguel Lagos Infante 

Professor, Faculty of Engineering 

University of Talca, Chile 
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Apendix A 
Criterion for mechanical failure 

 

The criterion for determining the load at which the material subjected to a strain 

field yields and start plastical deformation, or initiates fracture, is not complex in a 

bidimensional regime. Combining the equations for the normal stresses in the directions of 

the axes 𝑥 and 𝑦,  

𝜎𝑥 = 𝜎1cos2𝜃 + 𝜎2sin2𝜃 , 

𝜎𝑦 = 𝜎1sin2𝜃 + 𝜎2cos2𝜃 , 

and the corresponding shear stress 

𝜏𝑥𝑦 = (−𝜎1 + 𝜎2) sin𝜃 cos𝜃 , 

as functions of the stresses 𝜎1 and 𝜎2 in the principal directions 1 y 2, and the angle 𝜃 

which makes the axis 𝑥 with the principal direction 1, the invariance of magnitudes 

𝑝 =
𝜎𝑥 + 𝜎𝑦

2
=

𝜎1 + 𝜎2

2
 

and 

𝑘 = √(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 =

𝜎1 − 𝜎2

2
  

is shown. The first invariant is the hydrostatic pressure, and the meaning of the second is 

seen next. It is straightforward that 

𝑑𝜎𝑥

𝑑𝜃
= −

𝑑𝜎𝑦

𝑑𝜃
= 𝜏𝑥𝑦 , 

which means that the normal stresses 𝜎𝑥 y 𝜎𝑦 assume extremal values in the principal 

directions and the shear stress vanishes. To fix ideas write 

𝜎max = 𝜎1, 𝜎min = 𝜎2 . 

It is clear that the critical condition for the mechanical stability of the material is 

connected with the maximal stress 𝜎1. However, to write the critical condition is necessary 

to recall that an isotropic hydrostatic pressure cannot produce any flow of the material. The 

deformation then occurs when the deviation of the normal stress with respect to the 

hydrostatic pressure, in the direction in which the former is maximal, exceedes a limit 

imposed by the nature of the material. The condition for the material does not flow is thus  

𝜎1 − 𝑝 < 𝜎𝑌 −
𝜎𝑌 + 0

2
=

𝜎𝑌

2
, 
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where 𝜎𝑌 is the yield stress of the material in a condition of uniaxial tension. In the left side 

of the inequality the hydrostatic pressure was substracted. By the definition of  𝑝, 

𝜎1 − 𝑝 =
𝜎1 − 𝜎2

2
 

which is just the invariant 𝑘, which shows that the condition for the mechanical stability of 

the system, written in an arbitrary frame of reference  

√(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 <

𝜎𝑌

2
 , 

does not depend on the choice of the frame of reference. 

 

 

 

Apendix B 
Grade SAE of bolts, norm in inches and millimeters 

 
Inches, norm USA 

SAE Grade Head Marking 
Size Range 

(in) 

Minimum 

Proof 

Strength 

(ksi) 

Minimum 

Tensile 

Strength 

(ksi) 

Material 

1 

 

1/4 - 1 1/2     

Low - 

medium 

carbon steel 

2 

 

1/4 - 3/4 

7/8 - 1 1/2 

55 

33 

74 

60 

Low - 

medium 

carbon steel 

5 

 

1/4 - 1 

1 1/8 - 1 1/2 

85 

74 

120 

105 

Medium 

carbon steel, 

Q & T 
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SAE Grade Head Marking 
Size Range 

(in) 

Minimum 

Proof 

Strength 

(ksi) 

Minimum 

Tensile 

Strength 

(ksi) 

Material 

5.2 

 

1/4 - 1 85 120 

Low carbon 

martensite 

steel, Q & T 

7 

 

1/4 - 1 1/2 105 133 

Medium 

carbon alloy 

steel, Q & T 

8 

 

1/4 - 1 1/2 120 150 

Medium 

carbon alloy 

steel, Q & T 

8.2 

 

1/4 - 1 120 150 

Low carbon 

martensite 

steel, Q & T 

 

1 ksi (1000 lb/in
2
) = 6.8948 MPa (106N/m

2
) 

Millimeters 

Class Head Marking 
Size Range 

(mm) 

Minimum 

Proof 

Strength 

(10
6
 Pa) 

Minimum 

Tensile 

Strength 

(10
6
 Pa) 

Material 
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Class Head Marking 
Size Range 

(mm) 

Minimum 

Proof 

Strength 

(10
6
 Pa) 

Minimum 

Tensile 

Strength 

(10
6
 Pa) 

Material 

4.6 

 

M5 - M36 225 400 

Low or 

medium 

carbon steel 

4.8 

 

M1.6 - M16 310 420 

Low or 

medium 

carbon steel 

5.8 

 

M5 - M24 380 520 

Low or 

medium 

carbon steel 

8.8 

 

M16 - M36 600 830 

Medium 

carbon steel, 

Q & T 
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Berthing energy calculation 

 
Design vessel: Panamax  
Type and capacity   Container vessel, up to 5000 TEU 

Length  (L)   294 m 

Breadth  (B)   32.2 m 

Draft  (D)   12.0 m 

Displacement  (M)   75690 ton   

Block coefficient   (𝐶𝐵)   0.65 

Maximal hull pressure   300 kN/m2 
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Fender 

 

 
IDIEM - Informe de ensayo No 795525 - 
13/12/2012   

Ecofender 2300  - 3 tires   

      Stored Energy  

  Deflection x Reaction  P W 

  [m] [kN] [kJ] 

        

  0 0 0 

  0,0189 50 0,474 

  0,0402 104 2,112 

  0,0696 158 5,964 

  0,1188 211 15,042 

  0,1716 265 27,609 

  0,2235 319 42,762 

  0,2715 372 59,346 

  0,3165 426 77,31 

  0,3603 480 97,143 

 
0,567 739,7 215,76 

  0,762 976,8 371,31 

  0,79 1010,9 397,7 

  0,81 1035,2 417,1 

  0,85 1083,9 447,2 

  0,9 1144,7 510,7 

  0,95 1205,5 566,9 

  1 1266,3 626,2 

  1,05 1327,2 688,5 

  1,1 1388,0 753,9 

  1,167 1469,5 846,2 

  1,2 1509,6 893,7 

 
......  Situation corresponding to a pressure 300 kN/m2 on hull. 
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                 BERTHING ENERGY CALCULATION   

            

              

DATA             

              

Vessel            

Initial speed 

 

0.103 m/s (0.2 knot) 

Displacement 75700 ton   

Length    294 m   

Breadth   32.2 m   

Draft   12 m   

Flat length 100 m   

          
Fender           

Energy absorption 

 

846 kN m   

for a reaction 1470 kN   

Fender area 4.9 

 
 

  
 

  

Maximal deflection    1.17 m   
          
            

CALCULATIONS           
            
Auxiliary parameters:         
Block coeff. 

 

0.650       
Giration radius 68.65 m (Formula PIANC) 
          
Coefficients:         
Excentricity 

 

0.466 (Formula PIANC) 
Virtual mass 1.900 (Formula Hueda) 
Cushion effect 1     
Elasticity 1     
          

Energies:                

Kinetic energy vessel        
 

  401.6 kN m 
Non parallel berthing              355.6 kN m 
Parallel berthing     763.1 kN m 
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CONCLUSIONS         

Pressure of critical fender on 
hull 

 
  
 

  300.0 

 

  
 

Energy excess on critical fender   -58.0 % 
Minimal number of fenders n = 1.0 defensas 

Safe distance between fenders 
  

11.13 
 

m   
 

      When the pressure over hull reaches 300 kN/m2 the critical fender (the first fender 
making contact with the vessel in berthing), has stopped the point of contact of the vessel, 
which initiated a rotational motion around the fender. The critical fender conserves 58% 
of its capacity after completing its function of aligning the vessel with the fender line. 

 
Berthing in abnormal conditions 
PIANC recommends inclusion of a coefficient between 1.1 and 2.0 to take into account the 
possibility of berthing in conditions whose parameters are out of the ranges which are 
considered as normal in the calculations.  The coefficient should take into account the 
costs of a possible accident when these have a special character, for example, when 
operating with flammable, explosive or contaminant freights. In our case a coefficient as 
big as the maximum recommended by PIANC (2.0) gives a berthing energy smaller than 
the maximum energy the fender Ecofender 2300 can absorb without exceeding the 
pressure 300 kN/m2 over the hull. 
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