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Abstract Closed-form analytical solutions for thin

shell buckling problem are useful in a wide range of

analysis and design problems. In this paper, the profile

of a cylindrical shell in the post-buckling regime of

axisymmetric deformation is analysed, and the solu-

tion is shown to be a Jacobi elliptic sine function, for

any load and axial deformation. The exact solution of

the non-linear differential equation for the thin elastic

shell profile holds for any deformation, up to the limit

in which the shell is almost flattened by the applied

load. Closed-form expressions are derived also for the

load dependent axial deflection and stored energy. The

analytical solution of the buckling loads and deformed

profile are found to agree well with an equivalent

numerical solution. Results show that an axially

compressed cylindrical shell exhibits ideal behaviour

for a safety shock energy absorber.

Keywords Buckling � Cylindrical shell � Elliptic
functions � Energy absorption

1 Introduction

Buckling of cylindrical shells is an important problem

in mechanics and is commonly encountered in several

applications, such as pressure vessels, aerospace and

civil structures. Although this system has been a

common subject in the specialized literature, only

numerical solutions have been reported (Kim and Kim

2002; Hunt et al. 2003; Paschero and Hyer 2009; Pinna

and Ronalds 2003; Simitses 1986; Wullschleger and

Meyer-Piening 2002). It is envisaged that an analytical

solution of this buckling problem will have several

advantages in designing thin shell curved structural

members. To address this, a closed-form analytical

solution for the axisymmetric buckling of an elastic

cylindrical shell under an axial load, applied uni-

formly on its edges, is developed here. Instead of

applying directly the methods of the standard theory of

elasticity, the present approach resorts to the analysis

of the equilibrium of forces at an elementary sector of

the shell. Although both procedures are conceptually

equivalent, dealing with forces instead of stresses

allows for a much simpler derivation of the equation

for the shell profile, because forces convey an implicit

first integration. In turn, the applied load, shell profile

and axial deflection are actually mean values, and

hence integrals over the strain fields. The non-linear

equation for the buckled axisymmetric thin shell

profile can be solved by analytical means and yields a

Jacobi elliptic sine function. Closed-form expressions

are also derived for the buckling critical load and
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energy stored in the post-buckling regime, which yield

a complete solution to the problem. Additionally, an

exact analytical solution may be useful to validate

numerical methods, which can eventually be used to

undertake more complex problems.

The analytical solution of this problem constitutes a

novel application of the theory of elliptic functions and

has importance on practical grounds, for example, in

energy absorption devices. A buckling system exhibits

the advantages of having a maximum reaction force,

the critical load, which can be designed to warrant no

damage to the colliding bodies or structures, together

with a large energy absorption capability if the

geometry is such that the reaction force remains high

enough in the post-buckling regime of deformation.

For example, dock bumpers in harbours are often

designed to work this way.

A cylindrical shell of radius R and axial length L0,

both measured in the unstrained condition, is shown

schematically in Fig. 1. The shell thickness e is

assumed to be much smaller than the radius R. The

applied opposed forces of magnitude P act along the

symmetry z-axis and are uniformly distributed on the

edges of the cylindrical shell. The material of the

cylinder is assumed to be elastic following Hooke’s

law. Instead of dealing with the model in the most

general way, facing all the complex deformation

modes a cylindrical shell may display (Kim and Kim

2002; Hunt et al. 2003; Paschero and Hyer 2009; Pinna

and Ronalds 2003; Simitses 1986; Wullschleger and

Meyer-Piening 2002), the mathematical approach is

kept simple by allowing only axisymmetric deforma-

tions. Barrel shaped post-buckling deformations con-

stitute an important case (primary deformation mode),

but it is well-known that periodic profiles are possible

as well (secondary modes).

The mechanical analysis shows that, in a short first

stage, the cylindrical shell undergoes a uniform com-

pressive strain along the z-axis, conserving strictly its

cylindrical shape and opposing a reaction force

proportional to the strain up to a maximal load PB.

The maximum strain reached in this first deformation

regime is indicated in Fig. 1a by a discontinuous line.

Compression beyond this limit makes the shell to start

buckling, and the cylindrical shell progressively

acquires a barrel shape, as in Fig. 1b, or a periodic

profile. In this second regime the reaction force

diminishes monotonically with strain, but always

maintaining a significant magnitude. The development

of the barrel profile involves stretching of the shell

circumference, which requires strong tensile forces

that contribute to stabilize the buckled structure. If

Young’s modulus is the same for tensile and com-

pressive loadings, periodic deformation modes are

also possible. The stabilization induced forces along

the perimeter of the shell alternate between tension

and compression when buckling is periodic.

2 Buckled strain regime of the cylindrical shell

of finite thickness

2.1 Equilibrium of the internal forces

Figure 2 shows the cylindrical shell in the strain

regime in which it adopts a barrel shaped profile by the

axial load P (equivalent to the reaction force at

equilibrium, or quasi-equilibrium). The cylindrical

coordinate system has its z-axis along the main

symmetry axis, and the origin O at the center of the

deformed shell, which extends from z ¼ �l=2 to

z ¼ l=2. Distance r is the radius of the shell for a given

(a)

(b)

Fig. 1 Schematic view of the cylindrical shell. a Unstrained

condition (solid lines) and critical axial strain for buckling

(discontinuous lines). b Buckled strain regime by the action of

compressive axial forces uniformly distributed on the shell edges.

Only the fundamental (primary) mode of deformation is shown
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z, so that function rðzÞ � R determines the profile of

the deformed shell. The azimuthal coordinate / is the

usual one in cylindrical coordinates, and is not shown

in Fig. 2 for the sake of clarity.

The equilibrium equations are derived from the

analysis of the forces operating on an elementary sector

of the shell, schematically represented in Fig. 2. The

method is preferred over simplywriting the equations of

the theory of elasticity and applying boundary condi-

tions, because it is simpler and provides a better physical

insight. The advantages of the procedure are discussed

in the final subsection of this section. Figure 2 and the

following derivations refer to the fundamental buckling

deformation mode to simplify the discussion, however,

extension to the general case is straightforward.

Figure 3 displays a diagram of the material element

and the forces applied on it. Forces on the plane

/ ¼ constant, containing the z-axis, are compressive

forces of magnitude Fcðzþ DzÞ and FcðzÞ. The forces
on the plane z ¼ constant, normal to the z-axis, are

tensile forces, because these stretch the shell contour

in its plane, and their magnitude is denoted F/ðzÞ.
Solutions with cylindrical symmetry were implicitly

assumed, because the forces were considered to be

independent of /. In general, FcðzÞ and F/ðzÞ for a

thick shell are surface integrals of the components, rij,
i; j ¼ r;/; z, of the stress tensor in cylindrical coordi-

nates, which may have a complex dependence on r and

z. The analysis on the basis of the equilibrium of forces

skips the functional dependence of stress field and

remains valid even for thick shells.

Figure 4a is a projection on the plane z ¼ constant of

the system of Fig. 3 showing the forces operating in

this plane, and Fig. 4b shows the vector composition

of them. Hence, the tensile forces give a sum of

magnitude

2F/ðzÞ sinðD/=2Þ! F/ðzÞD/ if D/� 0; ð1Þ

contained in the plane z¼ constant and pointing

towards the central z-axis.

Forces in the plane / ¼ constant are shown in

Fig. 5. They are the two compressive forces of

magnitude Fcðzþ DzÞ and FcðzÞ operating in the two

opposite edges, and the third one is the resultant of the

tensile forces in the plane z ¼ constant, whose mag-

nitude is F/ðzÞD/. The former two forces are tangent

to the curve rðzÞ � R determining the shell profile in

the corresponding application points, and subtend

angles hþ Dh and h with the z-axis, respectively.

Fig. 2 The deformed cylindrical shell, showing schematically

an elementary sector defined by the cylindrical coordinates r, /
and z (/ is implicit), and by the variations D/ and Dz

Fig. 3 The elementary sector of Fig. 2 and the compressive and

tensile forces Fc and F/ exerted on it

(a)

(b)

Fig. 4 a The graphic scheme of Fig. 3 projected on the plane

z ¼ constant. b Force diagram in the plane z ¼ constant
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Equilibrium requires

�Fcðzþ DzÞ cosðhþ DhÞ þ FcðzÞ cos h ¼ 0; ð2Þ

Fcðzþ DzÞ sinðhþ DhÞ � FcðzÞ sin h ¼ �F/D/:

ð3Þ

From Eq. (2) one can infer that the z-component of the

forces does not depend on z, and hence they can be

identified with the external force PD/=ð2pÞ applied

on the edge of the shell fringe defined by D/. The
argument is graphically shown in Fig. 6 and yields

Fcðzþ DzÞ cosðhþ DhÞ ¼ FcðzÞ cos h ¼ P

2p
D/: ð4Þ

2.2 Differential equation for the shell profile

function rðzÞ � R

Recalling Eq. (4) one can divide the first term in the

right hand side of Eq. (3) by Fcðzþ DzÞ cosðhþ DhÞ,

the second one by FcðzÞ cos h, and the right hand side

by PD/=ð2pÞ. It gives

tanðhþ DhÞ � tan h ¼ � 2pF/

P
: ð5Þ

Force F/ can be expressed as

F/ ¼ r//eDs; ð6Þ

where r// is the normal stress in the azimuthal

direction, e is the shell thickness and Ds the length

of the shell element shown in Fig. 5, and whose value

is

Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

Dz: ð7Þ

Replacing tan h ¼ �dr=dz and combining Eqs. (5),

(6) and (7) one obtains that, in the limit Dz ! 0,

d2r

dz2
¼ � 2per//

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

: ð8Þ

On the other hand, the normal stresses rrr , r// and rzz
satisfy Hooke’s law

e// ¼ r � R

R
¼ 1

E
ðr// � mrrr � mrzzÞ; ð9Þ

where E and m are the Young’s modulus and

Poisson ratio of the material the shell is made of.

Substituting

rzz ¼ � P

2pre
cos h; ð10Þ

cos h ¼ ½1þ ðdr=dzÞ2��1=2
and

rrr ¼ � F/D/
rD/Dz

¼ �r//
e

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

dr

dz

�2
s

ð11Þ

in Eq. (9), and solving for r//, it is obtained that

r// ¼ 1

1þ m
e

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

dr

dz

�2
s

� E
r � R

R
� mP

2per

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

dr

dz

�2
s

0

B

B

B

B

@

1

C

C

C

C

A

:

ð12Þ

Combining Eqs. (12) and (8) one finally obtains

Fig. 5 Forces in the plane / ¼ constant. Compressive forces

Fcðzþ DzÞ and FcðzÞ are tangent to the curve rðzÞ-R represent-

ing the shell profile, and subtend angles hþ Dh and hwith the z-
axis, respectively. The force F/ðzÞD/ is obtained in Fig. 4 from

the tensile forces in the plane z ¼ constant. The discontinuous

line represents the shell profile

Fig. 6 Equilibrium of a shell fringe of finite size in the z-

direction. The z-component FcðzÞ cos h of the force is PD/=ð2pÞ
for any z in ½�l=2; l=2�
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d2r

dz2
¼ �

2peE
RP

ðr � RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

dr

dz

�2
s

� m
r

1þ m
e

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

dr

dz

�2
s : ð13Þ

The differential Eq. (13) gives the profile rðzÞ of the
cylindrical shell deformed by the axial load P when

the proper physical conditions are imposed to the

solutions. The most evident conclusion one can infer

from Eq. (13) is that the load P cannot be null. Hence

it corresponds to a deformation regime occurring for

sufficiently high loads.

The unloaded cylindrical shell has a length L in the

axial direction, which reduces to a smaller length l by

the applied load P. The length reduction originates

from the elastic compressive strain of the deformed

shell and by the shape deformation itself projected in

the z-direction. If the elastic strain can be neglected

when compared to the effect of the shell deformation,

the length of the curved path adopted by the deformed

shell will conserve its original value L. Hence the

physical solutions of Eq. (13) must satisfy

L ¼
Z

l=2

�l=2

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

: ð14Þ

2.3 Present theoretical approach versus theory

of elasticity

The equation for the shell profile was derived in the

preceding subsections from analysing the equilibrium

of the forces exerted on a representative elementary

sector of the material medium, introducing from the

beginning the symmetry constraints. For our present

purposes, this procedure is much simpler and practical

than the more standard approach of readily introduc-

ing the system boundary conditions into the general

formalism of the theory of elasticity. This is because

the latter approach oblige us to deal with complex

stress distributions, which may not be our main

interest. In the theory of elasticity the free surfaces

of the shell are defined as surfaces where the stresses

vanish, and the theory furnishes the equations for

calculating the detailed distribution of the stresses

occurring in between. A recent paper by Zozulya and

Zhang (2012) provides a good example of this kind of

precise calculation of the deformation of cylindrical

shells, together with a detailed account of the stress

fields inside the material using numerical methods.

The cost paid for such a complete solution is the

introduction of numerical methods from the very start.

However, if it is not necessary to know about the

preciseprofilesof theouter and inner surfacesof the shell,

or how the stresses vary inside, the present approach is

quite adequate and provides an exact solution of the

deformed profile. The forces FcðzÞ and F/ðzÞ in Fig. 3

account for the integrated effect of these stresses, and

their equilibrium condition proves to be sufficient for

determining the equation for the mean shell profile,

which has the advantage of being closed-form.

3 The profile equation for the buckling of a thin

shell and its solution

The trivial solution r ¼ constant reduces Eq. (13) to

E
r � R

R
¼ m

P

2pre
ðr ¼ constantÞ; ð15Þ

which can be interpreted as the Poisson effect on the

shell circular perimeter 2pr accompanying the uni-

form axial strain produced by the applied compressive

stress P=ð2preÞ. This uniform solution, which is

expected to be stable up to a critical load PB, preserves

the cylindrical shape and produces only small geo-

metrical variations, because E is usually very large

(0.01–500 GPa). The buckled non trivial solutions of

Eq. (13) involve much larger deformations. In the

post–buckling regime r assumes values in the interval

R\r�Rþ L=2 when l varies from l ¼ L to l ¼ 0.

The second term m=r in the numerator of the right hand

side of Eq. (13) is comparable with the first one only

when jr � Rj=R � 1. As long as r departs from R

beyond the range of the purely elastic distortions, the

term m=r becomes negligibly small when compared to

the one proportional to E. Hence it is advisable to

distinguish between elastic strains and geometric

changes and write

d2r

dz2
¼ � 2peE

PR
ðr � RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

ðbuckling; thinshellÞ:
ð16Þ

Equation (16) also assumes a thin enough shell to

neglect the second term in the denominator of the right
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hand side of Ec. (13) (e � R). Although this non-

linear equation is not listed in the specialized treatises

on elliptic functions and integrals (Gradshteyn and

Ryzhik 2007; Byrd and Friedman 1971), it will be

shown next that its exact solution is a Jacobi elliptic

sine function, which holds for any load and deforma-

tion state, including the limit in which the shell has

been completely flattened by the applied force.

Defining

yðzÞ ¼ rðzÞ � R; p ¼ 2peE
PR

; R ¼ constant; ð17Þ

Eq. (16) reads

y00 ¼ �py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

; ð18Þ

and the substitution

yðzÞ ¼ 1
ffiffiffi

p
p uð ffiffiffi

p
p

zÞ ð19Þ

turns it into

u00 ¼ �u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

: ð20Þ

Multiplying both sides of this equation by u0 yields the
integrable form

u00u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p ¼ �uu0; ð21Þ

which can be solved to give

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

¼ � 1

2
u2 þ 1

2
u20 þ 1; ð22Þ

where u0 ¼ uð0Þ. Because of the symmetry with

respect to the origin, uð ffiffiffi

p
p

zÞ must have its maximum

at z ¼ 0 and the integration constant was chosen so

that u0ð0Þ ¼ 0. Denoting now

f ¼ ffiffiffi

p
p

z; vðfÞ ¼ uðfÞ
u0

; k2 ¼ ðu0=2Þ2

1þ ðu0=2Þ2
;

ð23Þ

Eq. (22) can be rewritten as

dv

df
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� v2Þ
�

1þ u20
4
� u20

4
v2
�

s

; ð24Þ

or

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p dv

df
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� v2Þð1� k2v2Þ
p

: ð25Þ

Inverting this equation and integrating with respect to

v one has

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p ðfþ f1Þ ¼

Z

v

0

dv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� v2Þð1� k2v2Þ
p ¼ Fðv; kÞ;

ð26Þ

where Fðv; kÞ is the incomplete elliptic integral of the

first kind with modulus k, (0� k� 1) (Gradshteyn and

Ryzhik 2007; Byrd and Friedman 1971), and f1 is an
integration constant. The same symbol was used for

the integration variable and the upper integration limit

to simplify the notation.

The inverse function of the incomplete elliptic

integral Fðv; kÞ is known as the Jacobi elliptic sine

function sn. Hence Eq. (26) is equivalent to

v ¼ sn

�

fþ f1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p ; k

�

¼ sn

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

p

1� k2

r

ðzþ z1Þ; k
�

:

ð27Þ

Function snðx; kÞ takes values in the interval ½�1; 1�
and is periodic in x with period 4KðkÞ, where KðkÞ ¼
Fð1; kÞ is the complete elliptic integral of the first kind.

Also, snð0; kÞ ¼ snð2K; kÞ ¼ 0 and snðK; kÞ ¼ 1. The

Jacobi sine function is symmetric with respect to x ¼
K and has a maximum there.

Therefore, the solution satisfying the boundary

conditions yð	l=2Þ ¼ 0 is such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi

p

1� k2

r

¼ 2KðkÞ
l

and z1 ¼
l

2
: ð28Þ

Taking
ffiffiffi

p
p

and z1 from these equations, and recalling

the third of Eq. (23), which gives u0=2 ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

,

one has that the profile of the buckled cylindrical shell

is given by

yðzÞ ¼ rðzÞ � R ¼ k

ð1� k2ÞKðkÞ sn
�

2KðkÞ
l

�

zþ l

2

�

; k

�

:

ð29Þ

This solution corresponds to the fundamental (pri-

mary) mode of deformation, for which the cylinder

takes a barrel shape. As the Jacobi sine function has

period 4KðkÞ, higher order modes are obtained

substituting ð2nþ 1ÞKðkÞ, with n ¼ 1; 2; 3; . . ., in

place of KðkÞ in Eqs. (28) and (29). Only the

fundamental mode will be considered in what follows

because the generalization is straightforward.
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Combining the first Eq. (28) with the definition (17)

of the constant p, a relation between the applied force

P and k follows

P ¼ peEl2

2Rð1� k2ÞK2ðkÞ :
ð30Þ

Therefore, it remains just to determine the meaning of

k to have a complete solution of our problem. In the

next subsection it will be shown that k2 is essentially

the relative axial deformation e ¼ ðL� lÞ=L of the

cylindrical shell. The elliptic integral KðkÞ can be

calculated quite easily from the defining integral or the

series

KðkÞ ¼ p
2

�

1þ
X

1

n¼1

�

ð2n� 1Þ!!
2nn!

�2

k2n
�

: ð31Þ

Figure 7 shows the Jacobi sine function snð2Kx; kÞ
for three values of k. The graphs make apparent that

the Jacobi elliptic function goes from sinðpxÞ to a

square wave when the modulus k goes from 0 to 1. The

latter situation corresponds to the final collapse of the

cylindrical shell, when l ¼ 0.

3.1 The equation for the modulus k

When R ¼ constant one has r0ðzÞ ¼ y0ðzÞ ¼ u0ð ffiffiffi

p
p

zÞ,
hence ð1þ r02Þ1=2 can be replaced by ð1þ u02Þ1=2 in

the general condition expressed by Eq. (14). Making

this and then substituting Eq. (22),

L ¼
Z

l=2

�l=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

dz ¼ � 1

2

Z

l=2

�l=2

u2ð ffiffiffi

p
p

zÞ dzþ 1

2
u20lþ l:

ð32Þ

Recalling now

uð ffiffiffi

p
p

zÞ ¼ u0sn
2K

l
zþ l

2

� �

; k

� �

; u0 ¼
2k
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p ;

ð33Þ

Eq. (32) can be written as

L� l

l
¼ 2k2

1� k2
1� 1

2KðkÞ

Z

2KðkÞ

0

sn2 ðf; kÞ df

0

B

@

1

C

A

:

ð34Þ

The integral appearing in this equation has been solved

in terms of the elliptic functions and one has the

mathematical identity (Gradshteyn and Ryzhik 2007)

Z

sn2 f df ¼ 1

k2
½u� Eðamf; kÞ�; ð35Þ

where Eð/; kÞ, 0�/� p=2, is the second kind

incomplete elliptic integral with modulus k. In the

usual notation of the theory of elliptic integrals the

amplitude am means am f ¼ arcsinðsn fÞ. Care must

be taken in replacing properly the integration limits in

the indefinite integral (35) because 0� am f� p=2,
and amK ¼ p=2. Therefore, 2K is outside the domain

in which the amplitude function is defined. To

overcome this difficulty one can take advantage of

Fig. 7 The Jacobi elliptic sine function (solid lines) for three

values of the modulus k, compared with the trigonometric sine

function (circles). For k\0:7 the two functions are very similar.

At k[ 0:7 the elliptic function is sensibly broader and goes to a
square wave in the limit k ¼ 1. Physically, k ¼ 1 corresponds to

the situation in which the cylindrical shell has been completely

flattened by the applied force P and l ¼ 0
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the symmetry of snðx; kÞ with respect to x ¼ K and

write

Z

2K

0

sn2fdf ¼ 2

Z

K

0

sn2fdf ¼ 2

k2
½K � Eðp=2; kÞ�

ð36Þ

replacing am K ¼ p=2. Eðp=2; kÞ ¼ EðkÞ is the com-

plete elliptic integral of the second kind, modulus k,

defined by the integral (Gradshteyn and Ryzhik 2007)

EðkÞ ¼
Z

p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 /
q

d/; ð37Þ

or the series

EðkÞ ¼ p
2

�

1�
X

1

n¼1

�

ð2n� 1Þ!!
2nn!

�2
k2n

2nþ 1

�

: ð38Þ

The term DðkÞ ¼ ð1=k2Þ½KðkÞ � EðkÞ� can be evalu-

ated either by combining the power series (31) and

(38) as

DðkÞ ¼KðkÞ � EðkÞ
k2

¼ p
2

X

1

n¼0

2ðnþ 1Þ
2nþ 1

�

ð2nþ 1Þ!!
2nþ1ðnþ 1Þ!

�2

k2n;

ð39Þ

or solving the integral

DðkÞ ¼
Z

p=2

0

sin2 / d/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 /
p ; ð40Þ

which follows directly from the definitions of KðkÞ
and EðkÞ.

Eq. (34) then becomes

e
1� e

¼ 2k2

1� k2
1� DðkÞ

KðkÞ

� �

; e ¼ L� l

L
; ð41Þ

which determines exactly the modulus k as a function

of only the relative axial compression e ¼ ðL� lÞ=L.
The function k ¼ f ðeÞ does not depend on the char-

acteristics of the cylindrical shell and is shown in

Fig. 8. The simple approximate rule

k2 � e ð42Þ

holds over the whole range of e with a 5 % maximum

error.

4 Critical load, reaction force and energy storage

The deformation regime studied in the preceding

sections takes place for a constant non-zero axial

load P, given by Eq. (30). This is because it was

assumed from the beginning that loading curves

the cylindrical shell profile and Eqs. (29), (30) and

(41) hold at buckling and in the post-buckling regime

of deformation. The variable e measures only the

deformation induced relative displacement of the

edges along the axial direction, and the much

smaller elastic deformations have been neglected.

The force

P ¼ peEL2ð1� eÞ2

2Rð1� k2ÞK2ðkÞ
ð43Þ

has an absolute maximum PB at e ¼ k ¼ 0. Recalling

Kð0Þ ¼ p=2, the maximal reaction force reads

PB ¼ 2eEL2

pR
; ð44Þ

and one can write

PðeÞ
PB

¼ p2

4

ð1� eÞ2

ð1� k2ÞK2ðkÞ :
ð45Þ

Figure 9 shows P=PB, which according to Eqs. (45)

and (41) is an universal function of e. Figure 10 shows

the energy stored by the shell in the post-buckling

deformation regime, obtained integrating Eq. (45)

with respect to e.

Fig. 8 The squared modulus k2 and the relative axial

compression e ¼ ðL� lÞ=L, as given by Eq. (41)
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5 Homogeneous and buckled deformation regimes

The problem focused here is the deformation in which

the cylindrical shell is gradually compressed along its

main symmetry axis. In a first stage the compression is

elastic and conserves the cylindrical shape. The

relative displacement x of the edges is given by

Hookes’s law

P

2pRe
¼ E

x

L0
; ð46Þ

where L0 is the original length of the unstrained

cylinder. Once the elastic distortion x takes a critical

value xB, such that the applied force P reaches the

threshold value PB, the cylinder starts to buckle and

Eq. (43) starts holding, instead of Eq. (46). At the

critical deformation xB the surface just starts to acquire

the barrel shape, and the two deformation regimes

coexist. So Eqs. (43) and (46) are both valid for L ¼
L0 � xB and e ¼ 0 (recall that L stands for the shell

length when buckling is just initiated). Thus the axial

deformation xB at which the buckling regime sets in

can be obtained from combining Eqs. (44) and (46) to

eliminate PB. This yields

xB

L0
¼ 1þ pR

ffiffiffi

2
p

L0

� �2

� pR
ffiffiffi

2
p

L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pR
ffiffiffi

2
p

L0

� �2

þ2

s

; ð47Þ

which is the equation for the critical elastic strain

xB=L0. Notice that the critical elastic strain xB=L0
depends only on the geometric parameters, and not on

the mechanical properties of the material. The critical

load is

PB ¼ 2pReE 1þ pR
ffiffiffi

2
p

L0

� �2

� pR
ffiffiffi

2
p

L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pR
ffiffiffi

2
p

L0

� �2

þ2

s

2

4

3

5:

ð48Þ

6 Comparison with a numerical solution

In this section, we compare the analytical solution

developed with the solution of the same problem using a

numerical method to assess its consistency with the

present analytical solution. To this end, the finite element

method (FEM) was used to solve the same problem. The

numerical problem considered was the buckling of a thin

cylindrical shell under uniform axial compression. The

shell had a mean radius of 100 mm and thickness of 5

mm, and Young’s modulus was 10 MPa. The cylinder

was uniformly compressed by applying a pressure on its

edges to initiate buckling. Shell elements were used to

mesh the cylinder. Amesh resolution convergence study

was performed to ensure that the element size usedwasof

sufficiently fine resolution to produce a highly accurate

numerical solution of the buckling problem.

The critical buckling load, PB, obtained from the

numerical solution is 2769 N. This closely compares

with that determined from the analytical solution

(2666 N), with the difference being 3.7 %. Figure 11

compares the buckled shape (for primary mode) of the

cylinder obtained from the present analytical solution

Fig. 9 Reaction force P relative to the maximum PB as a

function of axial compression e ¼ ðL� lÞ=L , as given by

Eq. (45)

Fig. 10 Energy absorbed by the cylindrical shell in the post-

buckling deformation regime, in units of PBL and for any

relative axial compression e
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with that predicted by FEM for the buckling strain of

0.1571 (that corresponds to k ¼ 0:4). It is noteworthy

that the two shapes agree very well. The load, P, at this

configuration as predicted by FEM is 2128 N, which

is very close to 2069 N (with the difference being 2.8

%), obtained from the analytical solution. Therefore,

the present analytical solution of the cylindrical shell

buckling problem is accurate as evaluated against an

equivalent fine resolution numerical solution.

7 Conclusions

In this paper, the buckling of cylindrical shells under

axial compression is studied. An analytical solution

providing the deformed shape of the cylinder in the

post-buckling regime is developed. The solution has

the advantage of being closed-form, represented by

Jacobi elliptic sine function. Such a solution facilitates

simple analysis of thin shell structures for bucking

without using relatively complex numerical methods,

which may require more effort and computer time. An

expression for the energy stored by the cylinder is also

derived, which can be applied to the design and

analysis of energy absorption devices. The present

analytical solution is quite accurate as assessed against

an equivalent numerical solution. This suggests that

the analytical solution can, in turn, be useful to

validate the accuracy of various numerical methods

for shell buckling problems.
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